
International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 43
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Study on Memory Hierarchy Optimizations
Sreya Sreedharan,Shimmi Asokan

Abstract—Cache is an important factor that affects total system performance of computer architecture. Due to the ever increasing
performance gap between the processor and the main memory, it becomes crucial to bridge the gap by designing an efficient memory
hierarchy capable of reducing the average memory access time. Many of the recent studies in improving performance of cache have
focused on minimizing the cache miss rates. Cache miss rate can be reduced by optimizing data or instruction cache. Data is too large to
be kept in cache so optimization of data cache is necessary since it has to be moved between memory and cache frequently. A way to
decrease data cache miss is to restructure the code. This paper explains various restructuring techniques and analyzing of cache miss
rates using valgrind tool.

Index Terms—Cache, Cache Miss, Cache miss rate, Average Memory Access Time

————————————————————

1 INTRODUCTION

he main memory used in personal computers is dy-
namic RAM. It is slower and holds data as long as

power is applied. So static RAM is introduced which is
faster when compared to dynamic RAM. A memory cache
is a static RAM introduced between processor and main
memory in order to store copies of data from frequently
used main memory locations. It is smaller and expensive
when compared to main memory. When a program needs
to access data from the disk, it first checks the cache. Data is
transferred between memory and cache in blocks of fixed
size known as cache lines or cache blocks. If the required
block is found within a cache, a cache hit occurs. If the re-
quired block is not found, a cache miss occurs. If miss oc-
curs, the block must be obtained from the main memory.

Compulsory, capacity and conflict misses are the three
types of cache misses. In order to make space for the new
entry, cache may have to evict one of the existing entries.
The method that it chooses the entry to evict is known as
replacement policy. There are various replacement policies.
In least-recently used approach, least recently used blocks
are discarded. In most-recently used approach, the most
recently used blocks are discarded. This approach can be
used in situations where older items are most likely to be
accessed. The best approach would be to discard the data
that will not be needed for the longest time in future, which
uses Belady's algorithm. But this is not practical since it is
impossible to predict the future references. Another ap-
proach is known as least-frequently used in which those
blocks which are used less frequently are discarded first.

The very first access to the requested block results in a miss.
Such a miss is known as compulsory miss or cold start
miss. Under this type the block that is needed must be
bought into the cache from the main memory.
A capacity miss occurs when a block that is requested was
there in the cache earlier, but was discarded due to not
enough capacity of the cache to hold all the blocks needed
for the current execution. It occurs due to the finite size of
the cache, regardless of block size or associativity. In direct
mapped or set-associative caches even if the cache has
enough space to hold blocks, blocks are discarded in order
to make space for another block in the set. If request comes
for such a discarded block, conflict miss or interference
miss is said to occur.

Cache works on the principle of locality of refer-
ence. There are two types of locality of reference. They are
spacial and temporal. If a particular memory location is
referenced at a particular time, then it is likely that nearby
memory locations will be referenced in the near future. This
approach is known as spacial locality of reference. If at one
point in time a particular memory location is referenced,
then it is likely that the same location will be referenced
again in the near future. This approach is known as tem-
poral locality of reference.

In a system with virtual memory, the virtual ad-
dress generated by the processor is translated to physical
address and is used to access the cache. A page table is
used to store the virtual address to physical address map-
pings. To speed up virtual address translation, the system
stores recently used translations in the translation look-
aside buffer (TLB), which is a separate cache. The search
key is the virtual address and corresponding physical ad-
dress is obtained from the TLB.

A memory hierarchy which includes cache im-
proves performance. Cache performance can be measured
in terms of Average Memory Access Time, which is given
by

T T

————————————————

• SreyaSreedharan is currently pursuing Mtech in department of CS inRaja-
giri school of engineering and technology, kerala ,India, E-mail:
twindudes@gmail.com

• Co-AuthorShimmiAsokan is working as Assrstant professor in depertment
of CS in Rajagiri school of engineering and technology, kerala ,India,E-
mail:shimmi_a@rajagiritech.ac.in

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 44
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Average Memory Access Time= Hit Time + Miss Rate *

Miss Penalty

where, Hit time is the time taken to hit in the cache, Miss

Rate is the number of accesses that miss/Total no. of ac-
cesses and Miss Penalty is the time needed to service a miss
[8] .

Efficiency of caches depend on the spacial and

temporal properties of programs. In order for the pro-
gram code to efficiently utilize the cache ,program can
be restructured. Restructuring may aim at accessing con-
tiguous locations in memory by changing data access
order or by providing maximum reuse opportunities for
cache. Changing the data access order ensures the access
of data in the order in which they are stored. Reuse of
cache can be done by utilizing the data already being
fetched from memory to the maximum before being
evicted from the cache. This kind of restructuring reduc-
es the number of times each line has to be fetched into
the cache. Valgrind tool helps in analyzing cache misses
in a program and the effect of code restructuring in im-
proving cache misses can be studied.

2 RELATED WORK
There have been several approaches to analyze var-

ious cache improvement techniques. [8] Provides an
excellent discussion on this topic. The various tech-
niques for improving cache performance focusing on
reducing the miss penalty, reducing the miss rate and
reducing the time to hit in the cache were discussed in
detail. Techniques under reducing miss penalty involve
introducing multi-level caches, considering read miss
before write miss, critical word first and merging write
buffers. techniques under reducing miss rate involve
large cache size, large block size, increasing associativi-
ty, victim cache, pseudo associativity and compiler op-
timization techniques. Time to hit in the cache can be
reduced by using small cache or by avoiding address
translation.

[15] Discusses two of the cache performance im-
provement techniques such as sub-block placement and
victim cache concept. [14] Discusses the data and in-
struction cache optimization and various loop transfor-
mations in detail. [5] Discusses loop tiling in detail and
[1] discusses a minor variation of loop tiling.[6] Provides
the necessary details of memory hierarchy involving
cache and the way cache access is done in detail. [13]
Explains loop interchange in detail with an example. [7]
and [10] details various loop transformations. In this
paper we attempt to analyze restructuring of program
code and its effect on cache performance.

3 SECTIONS
Caches are organized as a collection of cache blocks

or lines. A cache block is the unit of data transfer
to/from an underlying layer in the memory hierarchy
.The mapping between memory blocks and cache blocks
is an important design issue. There are three general
approaches for the mapping of a block to the cache. They
are direct mapped cache, fully associative cache and set
associative cache.

Direct mapped cache: This is the simplest approach.
In this approach, the main memory block index 'k', get
mapped on to 'k mode n' of cache memory, where 'n' is
the number of blocks in the cache. Direct mapping might
lead to greater page faults which can be reduced by as-
sociative mapping.

Fully associative cache: This is the fastest mapping

technique. In a fully associative cache a memory block
can be placed in to any of the cache blocks. This tech-
nique consumes more number of tag bits.

Set associative cache: In a k-way set-associative
cache, cache blocks are divided into sets. Each set con-
tain 'k' blocks. A memory block can be placed in any
block of a particular set. Mapping is done using the
function ‘k mode s’, where ‘k’ is the main memory block
index and ‘s’ denote the number of sets. This technique
requires less number of tag bits compared to fully asso-
ciative mapping and more number of tag bits compared
to direct mapping.

As an example, let us assume that we have a direct-
mapped cache and two scalar variables ‘a’ and ‘b’ that
are being accessed by a program in the order “a, b, a, b,
a, b, a, b”. If these two variables are laid out in memory
such that they belong to two different memory blocks
that map to two different cache blocks. Then this access
pattern leads to only two misses. On the other hand,
suppose the memory layout is such that ‘a’ and ‘b’ map
to two memory blocks that in turn get mapped to the
same cache block. Then the same access pattern may
lead to all eight accesses being a miss. Therefore, layout
of data in memory can play a crucial role [12].

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 45
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

4 OPTIMIZATION TECHNIQUE

Most systems follow harvard architecture
which is shown in figure 1. Harvard architecture uses 2
level cache memory in which level 1 cache is a split
cache consisting of data cache and instruction cache.
Level 2 cache is a unified cache. Harvard architecture
allows the processor to fetch instructions from the in-
struction cache and data from the data cache simultane-
ously .Instruction cache optimization is not given much
importance because most of their execution time is spent
in small computational kernels based on loop nests[10].
But data is too large to be kept in a higher level of
memory hierarchy such as cache and thus optimization
of data cache has to be focused on.

Fig 1: A typical memory hierarchy

Data cache optimization can be further classified on to
data access optimization and data layout optimization.
Data access optimization is restructuring the code by
changing the order of execution of the program. Loop
transformations fall into the category of data access op-
timization. Loop transformations include loop inter-
change, loop fusion and loop tiling.

i) Loop Interchange

Programs have nested loops that access data in
memory in non sequential order. Simply exchanging the
nesting of the loops can make code access the data in the
order in which they are stored. It reduces misses by im-
proving spatial locality. It specifically helps in decreas-
ing compulsory miss.

ii) Loop Fusion
This technique combines two independent loops that
uses the same variables. Some programs have separate
sections of code that access the same array or those that
perform different computation on common data. Fusing
multiple loops into a single loop allows the data in cache

to be used repeatedly before being swapped out. Loop
fusion reduces misses through improved temporal local-
ity.

iii) Loop Tiling

Loop tiling tries to reduce misses via improving tem-
poral locality. The goal is to maximize accesses to the
data being loaded in to the cache before the data are re-
placed. Tiling decreases capacity miss. It operates on sub
matrices or blocks unlike loop interchange. Loop tiling
can be also termed as blocking.

5 RESULTS AND DISCUSSION

Programs 1.1 and 1.2 given below demonstrates loop
interchange. The first program is the loop interchanged
code and its data cache miss rate is less when compared
with the second program. This is because program 1.1
access data in the order in which they are stored assum-
ing c follows row- major access.

Program 1.1: intmain(void)
{
int h, i, j, a[1024][1024];
for (h = 0; h < 10; h++)
for (i = 0; i< 1024; i++)
for (j = 0; j < 1024; j++)
a[i][j] = 0 ;
return 0;
}

Program 1.2: intmain(void)
{
int h, i, j, a[1024][1024] ;
for (h = 0; h < 10; h++)
for (i = 0; i< 1024; i++) for (j = 0; j < 1024; j++)
a[j][i]=0;
return 0;
}

In order to profile loop interchange effects we use
valgrind tool. Valgrind has an associated tool ,Cache
Grind which is a cache simulator. Loop interchange op-
eration reduces first level data cache miss rate (D1d miss
rate) from 19.9% to 1.2%[13].

Program 2.1 and 2.2 given below demonstrates loop
fusion. Program 2.1 is the program before applying loop
fusion and program 2.2 is on applying loop fusion[11].
This operation reduces D1d misses from 1.7% to 0.9%.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 46
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Programs 3.1 is the program before applying loop tiling
and 3.2 demonstrates loop tiled program[11]. This opera-
tion reduces D1d miss rate from 9.6% to 0.0%.

Program 3.1: void main()
{
inti,j;
int a[1024][100] int b[1024][100];
for (i = 0; i< 1024; i++) for (j = 0; j < 1024; j++) a[i][j] =
a[i][j] + b[j][i];
}
Program 3.2: void main()
{
inti,j;
int x, y, c[1024][100]; int b[1024][100];
for (i = 0; i< 1024; i += 2) for (j = 0; j < 1024; j += 2) for (x =
i; x <i + 2; x++) for (y = j; y <j + 2; y++) c[x][y] = c[x][y]+
b[x][y];
}

Figure 2 and 3 shows the benefit of using loop transfor-
mations.In fig. 2 level 1 data cache misses are analyzed and
in fig. 2 last level data cache misses are analyzed.

Fig 2.Improvement in D1 Miss Rate using Loop trans-
formations

Fig. 3: Improvement in LLd Miss Rate using Loop trans-

formations

6 CONCLUSION
Programs were run in valgrind tool and cache

misses were analyzed. Loop interchange significantly
reduces level 1 data cache (D1) miss rate. Loop fusion
reduces the last level data miss rate (LLd) and D1 miss
rate slightly. Loop tiling significantly reduces last level
data miss rate and D1 miss rate which greatly improves
performance.

REFERENCES

[1] PreetiRanjan Panda, Nakamura, Nikil.D.Dutt,

AlexandruNicolau, "Augmenting Loop Tiling with
Data Alignment for improved cache performance",
IEEE Transactions on computers, Vol. 48, NO. 2,
February 1999.

[2] AnantAgarwal and Steven Pudar, "Column-

Associative Caches: A Technique for reducing miss
rate in direct-mapped caches", In Proc. 20th annual
International Symposium on Computer Architec-
ture, Pages 179-190, May 1993.

[3] Scott McFarling, "Cache Replacement with Dynam-

ic Exclusion", Western Research Laboratory 250
University Avenue Palo Alto, California November
1991.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 47
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

[4] Steven P. Vanderwiel, David J. Lilja, “Data Prefetch
Mechanisms”, ACM Computing Surveys,
VOl.32,Issue 2, June 2000.

[5] Monica S. Lam, Edward E. Rothberg and Michael

E. Wolf, “The Cache Performance and Optimiza-
tion ofBlocked Algorithms”, Proceedings of fourth
International Conference on Architectural support
for programming languages and operating sys-
tems, CA April 1991.

[6] William.L.Lynch, “The interaction of Virtual

Memory and Cache Memory”, Technical Report
CSL-TR-93-587,October 1993.

[7] Kathryn.S.McKinley, Steve Carr, Chau-Wen Tseng

“Improving data locality with loop transfor-
mations,
IEEE Vol. 18, No. 4, July 1996.

[8] John.L.Hennessy, David.A.Patterson, "Computer

Architecture: A Quantitative Approach, Fourth
Edition, Morgan Kaufmann Publishers”.

[9] Blas Cuesta, Alberto Ros, Marı´aE.Go´mez, Anto-

nio Robles, and Jose´ Duato, "Increasing the effec-
tiveness of directory caches by avoiding the track-

ing of Noncoherent memory blocks", IEEE Transac-
tions on computers, Vol. 62, No.3,March 2013.

[10] Markus Kowarschik1 and Christian We, "An

Overview of Cache Optimization Techniques and
Cache Aware Numerical Algorithms", Springer
,Algorithms for Memory Hierarchies, LNCS 2625,
pp. 213-232, 2003.

[11] http://www.vi-

hps.org/upload/projects/hopsa/hopsa-nov12-
threadspotter.pdf

[12] Wei Ding, Jun Liu, MahmutKandemir and Mary

Jane Irwin, "Reshaping cache misses to improve
row buffer locality", IEEE 2013.

[13] NikolayPavlovich Laptev, "Analysis of cache archi-

tectures", Department of Computer Science – Uni-
versity of California Santa Barbara.

[14] Steven. S. Muchnick, "Advanced compiler Design

Implementation", Morgan Kaufmann Publishers.

[15] UmangChoudhary, Pratik Phadke, Vasundhara-

Puttagunta, SupreethUdayashankar, "Analysis of
Sub-block Placement and Victim Caching Tech-
niques".

 IJSER

http://www.ijser.org/

	1 Introduction
	2 Related Work
	3 Sections
	4 Optimization Technique
	5 Results and Discussion
	6 Conclusion
	References

