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Abstract—Cache is an important factor that affects total system performance of computer architecture. Due to the ever increasing 
performance gap between the processor and the main memory, it becomes crucial to bridge the gap by designing an efficient memory 
hierarchy capable of reducing the average memory access time. Many of the recent studies in improving performance of cache have 
focused on minimizing the cache miss rates. Cache miss rate can be reduced by optimizing data or instruction cache. Data is too large to 
be kept in cache so optimization of data cache is necessary since it has to be moved between memory and cache frequently. A way to 
decrease data cache miss is to restructure the code. This paper explains various restructuring techniques and analyzing of cache miss 
rates using valgrind tool. 

Index Terms—Cache, Cache Miss, Cache miss rate, Average Memory Access Time 
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1 INTRODUCTION
 

he main memory used in personal computers is dy-
namic RAM. It is slower and holds data as long as 

power is applied. So static RAM is introduced which is 
faster when compared to dynamic RAM. A memory cache 
is a static RAM introduced between processor and main 
memory in order to store copies of data from frequently 
used main memory locations. It is smaller and expensive 
when compared to main memory. When a program needs 
to access data from the disk, it first checks the cache. Data is 
transferred between memory and cache in blocks of fixed 
size known as cache lines or cache blocks. If the required 
block is found within a cache, a cache hit occurs. If the re-
quired block is not found, a cache miss occurs. If miss oc-
curs, the block must be obtained from the main memory. 
 
Compulsory, capacity and conflict misses are the three 
types of cache misses. In order to make space for the new 
entry, cache may have to evict one of the existing entries. 
The method that it chooses the entry to evict is known as 
replacement policy. There are various replacement policies. 
In least-recently used approach, least recently used blocks 
are discarded. In most-recently used approach, the most 
recently used blocks are discarded. This approach can be 
used in situations where older items are most likely to be 
accessed. The best approach would be to discard the data 
that will not be needed for the longest time in future, which 
uses Belady's algorithm. But this is not practical since it is 
impossible to predict the future references. Another ap-
proach is known as least-frequently used in which those 
blocks which are used less frequently are discarded first.  

 
 
 

 
The very first access to the requested block results in a miss. 
Such a miss is known as compulsory miss or cold start 
miss. Under this type the block that is needed must be 
bought into the cache from the main memory. 
A capacity miss occurs when a block that is requested was 
there in the cache earlier, but was discarded due to not 
enough capacity of the cache to hold all the blocks needed 
for the current execution. It occurs due to the finite size of 
the cache, regardless of block size or associativity. In direct 
mapped or set-associative caches even if the cache has 
enough space to hold blocks, blocks are discarded in order 
to make space for another block in the set. If request comes 
for such a discarded block, conflict miss or interference 
miss is said to occur. 
 

Cache works on the principle of locality of refer-
ence. There are two types of locality of reference. They are 
spacial and temporal. If a particular memory location is 
referenced at a particular time, then it is likely that nearby 
memory locations will be referenced in the near future. This 
approach is known as spacial locality of reference. If at one 
point in time a particular memory location is referenced, 
then it is likely that the same location will be referenced 
again in the near future. This approach is known as tem-
poral locality of reference.  

In a system with virtual memory, the virtual ad-
dress generated by the processor is translated to physical 
address and is used to access the cache. A page table is 
used to store the virtual address to physical address map-
pings. To speed up virtual address translation, the system 
stores recently used translations in the translation look-
aside buffer (TLB), which is a separate cache. The search 
key is the virtual address and corresponding physical ad-
dress is obtained from the TLB. 
 

A memory hierarchy which includes cache im-
proves performance. Cache performance can be measured 
in terms of Average Memory Access Time, which is given 
by 
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Average Memory Access Time= Hit Time + Miss Rate * 

Miss Penalty 
 
where, Hit time is the time taken to hit in the cache, Miss 

Rate is the number of accesses that miss/Total no. of ac-
cesses and Miss Penalty is the time needed to service a miss 
[8] . 
 
 

 
Efficiency of caches depend on the spacial and 

temporal properties of programs. In order for the pro-
gram code to efficiently utilize the cache ,program can 
be restructured. Restructuring may aim at accessing con-
tiguous locations in memory by changing data access 
order or by providing maximum reuse opportunities for 
cache. Changing the data access order ensures the access 
of data in the order in which they are stored. Reuse of 
cache can be done by utilizing the data already being 
fetched from memory to the maximum before being 
evicted from the cache. This kind of restructuring reduc-
es the number of times each line has to be fetched into 
the cache. Valgrind tool helps in analyzing cache misses 
in a program and the effect of code restructuring in im-
proving cache misses can be studied. 

 
 

2 RELATED WORK 
There have been several approaches to analyze var-

ious cache improvement techniques. [8] Provides an 
excellent discussion on this topic. The various tech-
niques for improving cache performance focusing on 
reducing the miss penalty, reducing the miss rate and 
reducing the time to hit in the cache were discussed in 
detail. Techniques under reducing miss penalty involve 
introducing multi-level caches, considering read miss 
before write miss, critical word first and merging write 
buffers. techniques under reducing miss rate involve 
large cache size, large block size, increasing associativi-
ty, victim cache, pseudo associativity and compiler op-
timization techniques. Time to hit in the cache can be 
reduced by using small cache or by avoiding address 
translation. 
 

[15] Discusses two of the cache performance im-
provement techniques such as sub-block placement and 
victim cache concept. [14] Discusses the data and in-
struction cache optimization and various loop transfor-
mations in detail. [5] Discusses loop tiling in detail and 
[1] discusses a minor variation of loop tiling.[6] Provides 
the necessary details of memory hierarchy involving 
cache and the way cache access is done in detail. [13] 
Explains loop interchange in detail with an example. [7] 
and [10] details various loop transformations. In this 
paper we attempt to analyze restructuring of program 
code and its effect on cache performance. 
 

3 SECTIONS 
Caches are organized as a collection of cache blocks 

or lines. A cache block is the unit of data transfer 
to/from an underlying layer in the memory hierarchy 
.The mapping between memory blocks and cache blocks 
is an important design issue. There are three general 
approaches for the mapping of a block to the cache. They 
are direct mapped cache, fully associative cache and set 
associative cache. 
 

Direct mapped cache: This is the simplest approach. 
In this approach, the main memory block index 'k', get 
mapped on to 'k mode n' of cache memory, where 'n' is 
the number of blocks in the cache. Direct mapping might 
lead to greater page faults which can be reduced by as-
sociative mapping. 

 
Fully associative cache: This is the fastest mapping 

technique. In a fully associative cache a memory block 
can be placed in to any of the cache blocks. This tech-
nique consumes more number of tag bits. 
 

Set associative cache: In a k-way set-associative 
cache, cache blocks are divided into sets. Each set con-
tain 'k' blocks. A memory block can be placed in any 
block of a particular set. Mapping is done using the 
function ‘k mode s’, where ‘k’ is the main memory block 
index and ‘s’ denote the number of sets. This technique 
requires less number of tag bits compared to fully asso-
ciative mapping and more number of tag bits compared 
to direct mapping. 
 

As an example, let us assume that we have a direct-
mapped cache and two scalar variables ‘a’ and ‘b’ that 
are being accessed by a program in the order “a, b, a, b, 
a, b, a, b”. If these two variables are laid out in memory 
such that they belong to two different memory blocks 
that map to two different cache blocks. Then this access 
pattern leads to only two misses. On the other hand, 
suppose the memory layout is such that ‘a’ and ‘b’ map 
to two memory blocks that in turn get mapped to the 
same cache block. Then the same access pattern may 
lead to all eight accesses being a miss. Therefore, layout 
of data in memory can play a crucial role [12]. 
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4 OPTIMIZATION TECHNIQUE 
 

Most systems follow harvard architecture 
which is shown in figure 1. Harvard architecture uses 2 
level cache memory in which level 1 cache is a split 
cache consisting of data cache and instruction cache. 
Level 2 cache is a unified cache. Harvard architecture 
allows the processor to fetch instructions from the in-
struction cache and data from the data cache simultane-
ously .Instruction cache optimization is not given much 
importance because most of their execution time is spent 
in small computational kernels based on loop nests[10]. 
But data is too large to be kept in a higher level of 
memory hierarchy such as cache and thus optimization 
of data cache has to be focused on. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1: A typical memory hierarchy 
 

Data cache optimization can be further classified on to 
data access optimization and data layout optimization. 
Data access optimization is restructuring the code by 
changing the order of execution of the program. Loop 
transformations fall into the category of data access op-
timization. Loop transformations include loop inter-
change, loop fusion and loop tiling. 
 
i) Loop Interchange 

Programs have nested loops that access data in 
memory in non sequential order. Simply exchanging the 
nesting of the loops can make code access the data in the 
order in which they are stored. It reduces misses by im-
proving spatial locality. It specifically helps in decreas-
ing compulsory miss. 
 
ii) Loop Fusion 
This technique combines two independent loops that 
uses the same variables. Some programs have separate 
sections of code that access the same array or those that 
perform different computation on common data. Fusing 
multiple loops into a single loop allows the data in cache 

to be used repeatedly before being swapped out. Loop 
fusion reduces misses through improved temporal local-
ity. 
 
iii) Loop Tiling 
 
Loop tiling tries to reduce misses via improving tem-
poral locality. The goal is to maximize accesses to the 
data being loaded in to the cache before the data are re-
placed. Tiling decreases capacity miss. It operates on sub 
matrices or blocks unlike loop interchange. Loop tiling 
can be also termed as blocking. 

 
 

5 RESULTS AND DISCUSSION 
 
Programs 1.1 and 1.2 given below demonstrates loop 
interchange. The first program is the loop interchanged 
code and its data cache miss rate is less when compared 
with the second program. This is because program 1.1 
access data in the order in which they are stored assum-
ing c follows row- major access.  
 
Program 1.1: intmain(void) 
{  
int h, i, j, a[1024][1024]; 
for (h = 0; h < 10; h++)  
for (i = 0; i< 1024; i++)  
for (j = 0; j < 1024; j++)  
a[i][j] = 0 ; 
return 0;  
} 
 
Program 1.2: intmain(void) 
{  
int h, i, j, a[1024][1024] ; 
for (h = 0; h < 10; h++)  
for (i = 0; i< 1024; i++) for (j = 0; j < 1024; j++)  
a[j][i]=0;  
return 0;  
}     

In order to profile loop interchange effects we use 
valgrind tool. Valgrind has an associated tool ,Cache 
Grind which is a cache simulator. Loop interchange op-
eration reduces first level data cache miss rate (D1d miss 
rate) from 19.9% to 1.2%[13]. 
 

Program 2.1 and 2.2 given below demonstrates loop 
fusion. Program 2.1 is the program before applying loop 
fusion and program 2.2 is on applying loop fusion[11]. 
This operation reduces D1d misses from 1.7% to 0.9%. 
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Programs 3.1 is the program before applying loop tiling 
and 3.2 demonstrates loop tiled program[11]. This opera-
tion reduces D1d miss rate from 9.6% to 0.0%. 

 
 

Program 3.1: void main() 
{  
inti,j;  
int a[1024][100] int b[1024][100];  
for (i = 0; i< 1024; i++) for (j = 0; j < 1024; j++) a[i][j] = 
a[i][j] + b[j][i]; 
}   
Program 3.2: void main() 
{  
inti,j;  
int x, y, c[1024][100]; int b[1024][100];  
for (i = 0; i< 1024; i += 2) for (j = 0; j < 1024; j += 2) for (x = 
i; x <i + 2; x++) for (y = j; y <j + 2; y++) c[x][y] = c[x][y]+ 
b[x][y]; 
} 

 
   

Figure 2 and 3 shows the benefit of using loop transfor-
mations.In fig. 2 level 1 data cache misses are analyzed and 
in fig. 2 last level data cache misses are analyzed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 2.Improvement in D1 Miss Rate using Loop trans-
formations 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Improvement in LLd Miss Rate using Loop trans-

formations 
 
 
 

6 CONCLUSION 
Programs were run in valgrind tool and cache 

misses were analyzed. Loop interchange significantly 
reduces level 1 data cache (D1) miss rate. Loop fusion 
reduces the last level data miss rate (LLd) and D1 miss 
rate slightly. Loop tiling significantly reduces last level 
data miss rate and D1 miss rate which greatly improves 
performance. 
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